Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(22): 12337-12351, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953377

RESUMO

Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC. Several gene clusters are successively induced and switched off before vegetative growth resumes. Concomitantly, programmed genome rearrangement (PGR) removes transposons and their relics from the new MACs. Development of the new MACs is controlled by the old MAC, since the latter expresses genes involved in PGR, including the PGM gene encoding the essential PiggyMac endonuclease that cleaves the ends of eliminated sequences. Using RNA deep sequencing and transcriptome analysis, we show that impairing PGR upregulates key known PGR genes, together with ∼600 other genes possibly also involved in PGR. Among these genes, 42% are no longer induced when no new MACs are formed, including 180 genes that are co-expressed with PGM under all tested conditions. We propose that bi-directional crosstalk between the two coexisting generations of MACs links gene expression to the progression of MAC development.


Assuntos
Paramecium tetraurellia , Expressão Gênica , Rearranjo Gênico , Genoma , Paramecium tetraurellia/citologia , Paramecium tetraurellia/genética , Macronúcleo
2.
Open Res Eur ; 1: 94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645128

RESUMO

Background: The yellow mealworm beetle, Tenebrio molitor, is a promising alternative protein source for animal and human nutrition and its farming involves relatively low environmental costs. For these reasons, its industrial scale production started this century. However, to optimize and breed sustainable new T. molitor lines, the access to its genome remains essential. Methods: By combining Oxford Nanopore and Illumina Hi-C data, we constructed a high-quality chromosome-scale assembly of T. molitor. Then, we combined RNA-seq data and available coleoptera proteomes for gene prediction with GMOVE. Results: We produced a high-quality genome with a N50 = 21.9Mb with a completeness of 99.5% and predicted 21,435 genes with a median size of 1,780 bp. Gene orthology between T. molitor and Tribolium castaneum showed a highly conserved synteny between the two coleoptera and paralogs search revealed an expansion of histones in the T. molitor genome. Conclusions: The present genome will greatly help fundamental and applied research such as genetic breeding and will contribute to the sustainable production of the yellow mealworm.

3.
J Vis Exp ; (151)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31566609

RESUMO

The study of small RNAs (sRNAs) by next-generation sequencing (NGS) is challenged by bias issues during library preparation. Several types of sRNA such as plant microRNAs (miRNAs) carry a 2'-O-methyl (2'-OMe) modification at their 3' terminal nucleotide. This modification adds another difficulty as it inhibits 3' adapter ligation. We previously demonstrated that modified versions of the 'TruSeq (TS)' protocol have less bias and an improved detection of 2'-OMe RNAs. Here we describe in detail protocol 'TS5', which showed the best overall performance. TS5 can be followed either using homemade reagents or reagents from the TS kit, with equal performance.


Assuntos
Pequeno RNA não Traduzido/genética , RNA-Seq/métodos , RNA-Seq/normas , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , MicroRNAs/genética , Plantas/genética , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas
4.
Nat Commun ; 10(1): 2710, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221974

RESUMO

In animals and plants, the H3K9me3 and H3K27me3 chromatin silencing marks are deposited by different protein machineries. H3K9me3 is catalyzed by the SET-domain SU(VAR)3-9 enzymes, while H3K27me3 is catalyzed by the SET-domain Enhancer-of-zeste enzymes, which are the catalytic subunits of Polycomb Repressive Complex 2 (PRC2). Here, we show that the Enhancer-of-zeste-like protein Ezl1 from the unicellular eukaryote Paramecium tetraurelia, which exhibits significant sequence and structural similarities with human EZH2, catalyzes methylation of histone H3 in vitro and in vivo with an apparent specificity toward K9 and K27. We find that H3K9me3 and H3K27me3 co-occur at multiple families of transposable elements in an Ezl1-dependent manner. We demonstrate that loss of these histone marks results in global transcriptional hyperactivation of transposable elements with modest effects on protein-coding gene expression. Our study suggests that although often considered functionally distinct, H3K9me3 and H3K27me3 may share a common evolutionary history as well as a common ancestral role in silencing transposable elements.


Assuntos
Elementos de DNA Transponíveis/genética , Inativação Gênica , Histonas/genética , Paramecium tetraurellia/genética , Complexo Repressor Polycomb 2/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...